HOME  INTERVIEWS  RESOURCES  NEWS  ABOUT

View by:  Subject  Theme  Question  Term  Person  Event

Quantum Physics

The second fundamental break with classical physics after general relativity came gradually over a thirty year period (1900-1930) with the development of quantum mechanics by dozens of physicists including Planck, Einstein, Bohr, Schrödinger, Heisenberg, and so on. Quantum phenomenon display: wave and particle properties as in the famous "two-slit experiment",Electrons or photons fired through tiny slits at a screen produce individual dots on the screen (a particle-like property) but the dots are grouped in interference and diffraction patterns (a wave-like... leading Niels Bohr to talk about "wave/particle duality"; discrete transitions (`jumps', `tunneling') between separate states;Electrons in a transistor penetrate through a barrier, though this is impossible according to classical physics; electrons in an atom move directly from orbit to orbit without passing through the intervening...spontaneous, random occurrences (though statistically law-abiding);Within a sample of uranium, individual atoms spontaneously decay; the probability of decay can be calculated, but nothing else: no one can predict which atom will decay, or explain why, amongst entirely...and the famous Heisenberg uncertainty principle, in which uncertainties occur in "conjugate" variables, such as position and momentum.Sets of classical variables which simultaneously have precise and unambiguous values lose this precision in quantum physics; thus the notion of a trajectory is undercut, since the location and motion of...

Accordingly, quantum mechanics is subject to competing interpretations - none of which can be overruled by known data to date.For an overview, see my article in Physics, Philosophy and Theology; for a non-technical introduction, see Nick Herbert, Quantum Reality; for a technical background, see Max Jammer, The Philosophy of Quantum...The Copenhagen interpretation of Niels Bohr stressed the epistemic limitations of quantum physics. Here one is forced to use contradictory models, such as waves and particles, to refer to the same phenomena in order to explain all of its aspects. Others argued for an ontological interpretation of quantum mechanics, arguing that quantum unpredictability points to a fundamental indeterminism in reality. Werner Heisenberg argued this way: the chance aspects of quantum phenomena are due to an ontological property, indeterminism, which holds at the quantum level in the world. Albert Einstein and later David Bohm also opted for an ontological interpretation, but they sided with determinism, hoping that the statistical character of quantum data could be explained by as yet unknown causal factors ("hidden variables") or by a revised view of matter itself. Eugene Wigner and others have suggested that it is mind acting on matter that accounts for quantum phenomena. Everett-Graham-Wheeler adopt a "many worlds" view, in which with every quantum phenomenon, the universe splits into all possible states, and every possible outcome occurs in a distinct but unobservable universe. Astonishingly, over 60 years have passed since quantum mechanics was completed and we still cannot decide between these interpretations based on physical data!

Email link | Printer-friendly | Feedback | Contributed by: Dr. Robert Russell

Topic Sets Available

AAAS Report on Stem-Cells

AstroTheology: Religious Reflections on Extraterrestrial Life Forms

Agency: Human, Robotic and Divine
Becoming Human: Brain, Mind, Emergence
Big Bang Cosmology and Theology (GHC)
Cosmic Questions Interviews

Cosmos and Creator
Creativity, Spirituality and Computing Technologies
CTNS Content Home
Darwin: A Friend to Religion?
Demystifying Information Technology
Divine Action (GHC)
Dreams and Dreaming: Neuroscientific and Religious Visions'
E. Coli at the No Free Lunchroom
Engaging Extra-Terrestrial Intelligence: An Adventure in Astro-Ethics
Evangelical Atheism: a response to Richard Dawkins
Ecology and Christian Theology
Evolution: What Should We Teach Our Children in Our Schools?
Evolution and Providence
Evolution and Creation Survey
Evolution and Theology (GHC)
Evolution, Creation, and Semiotics

The Expelled Controversy
Faith and Reason: An Introduction
Faith in the Future: Religion, Aging, and Healthcare in the 21st Century

Francisco Ayala on Evolution

From Christian Passions to Scientific Emotions
Genetic Engineering and Food

Genetics and Ethics
Genetic Technologies - the Radical Revision of Human Existence and the Natural World

Genomics, Nanotechnology and Robotics
Getting Mind out of Meat
God and Creation: Jewish, Christian, and Muslim Perspectives on Big Bang Cosmology
God, Humanity and the Cosmos: A Textbook in Science and Religion
God the Spirit - and Natural Science
Historical Examples of the Science and Religion Debate (GHC)
History of Creationism
Intelligent Design Coming Clean

Issues for the Millennium: Cloning and Genetic Technologies
Jean Vanier of L'Arche
Nano-Technology and Nano-ethics
Natural Science and Christian Theology - A Select Bibliography
Neuroscience and the Soul
Outlines of the Science and Religion Debate (GHC)

Perspectives on Evolution

Physics and Theology
Quantum Mechanics and Theology (GHC)
Questions that Shape Our Future
Reductionism (GHC)
Reintroducing Teleology Into Science
Science and Suffering

Scientific Perspectives on Divine Action (CTNS/Vatican Series)

Space Exploration and Positive Stewardship

Stem-Cell Debate: Ethical Questions
Stem-Cell Ethics: A Theological Brief

Stem-Cell Questions
Theistic Evolution: A Christian Alternative to Atheism, Creationism, and Intelligent Design...
Theology and Science: Current Issues and Future Directions
Unscientific America: How science illiteracy threatens our future
Will ET End Religion?

Current Stats: topics: >2600, links: >300,000, video: 200 hours.