Habitable Universes
We know that several of the distinctive features of the large scale
structure of the visible universe play a role in meeting the conditions needed
for the evolution of biochemical complexity within it.
The first example is the proximity of the expansion dynamics to the
‘critical’ state which separates an ever-expanding future from one of eventual
contraction, to better than ten per cent. Universes that expanded far faster
than this would be unable to form galaxies and stars and hence the building
blocks of biochemistry would be absent. The rapid expansion would prevent
islands of material separating out from the global expansion and becoming bound
by their own self-gravitation. By contrast, if the expansion rate were far
below that characterising the critical rate then the material in the universe
would have condensed into dense structures and black holes long before stars
could form.
The second example is that of the uniformity of the universe. The
non-uniformity level on the largest scales is very small,
Δ ≈ 10-5. This is a measure of the average relative
fluctuations in the gravitational potential on all scales. If Δ were
significantly larger then galaxies would have rapidly degenerated into dense
structures within which planetary orbits would be disrupted by tidal forces and
black holes would form rapidly before life-supporting environments could be
established. If Δ were significantly smaller then the non-uniformities in
the density would be gravitationally too feeble to collapse into galaxies and
no stars would form. Again, the universe would be bereft of the biochemical
building blocks of life.
In recent years the most popular theory of the very early evolution of
the universe has provided a possible explanation as to why the universe expands
so close to the critical life-supporting divide and why the fluctuation level
has the value observed. This theory is called ‘inflation’. It proposes that
during a short interval of time when the temperature was very high (say 1025K), the expansion of the
universe accelerated.
This requires the material content of the universe to be temporarily dominated
by forms of matter which effectively antigravitate for that period of time. This requires their density r
and pressure, p, to satisfy the inequality
|
|
(4) |
The inflation is envisaged to end because the matter fields responsible
decay into other forms of matter, like radiation, which do not satisfy this
inequality. After this occurs the expansion resumes the state of decelerating
expansion that it possessed before its inflationary episode began.
If inflation occurs it offers the possibility that the whole of the
visible part of the universe (roughly 15 billion light years in extent today)
has expanded from a region that was small enough to be causally linked by light
signals at the very high temperatures and early times when inflation occurred.
If inflation does not occur then the visible universe would have expanded from
a region that is far larger than the distance that light can circumnavigate at
these early times and so its smoothness today is a mystery. If inflation occurs
it will transform the irreducible quantum statistical fluctuations in space
into distinctive patterns of fluctuations in the microwave background radiation
which future satellite observations will be able to detect if they were of an
intensity sufficient to have produced the observed galaxies and clusters by the
process of gravitational instability.
As the inflationary universe scenario has been explored in greater
depth it has been found to possess a number of unexpected properties which, if
they are realized, would considerably increase the complexity of the global
cosmological problem and create new perspectives on the existence of life in
the universe.
It is possible for inflation to occur in different ways in different
places in the early universe. The effect is rather like the random expansion of
a foam of bubbles. Some inflate considerably while others hardly inflate at
all. This is termed ‘chaotic inflation’. Of course, we have to find ourselves
in one of the regions that underwent sufficient inflation so that the expansion
lasted for longer than t* and stars could produce biological
elements. In such a scenario the global structure of the Universe is predicted
to be highly inhomogeneous. Our observations of the microwave background
temperature structure will only be able to tell us whether the region which
expanded to encompass out visible part of the universe underwent inflation in
its past. An important aspect of this theory is that for the first time it has
provided us wit ha positive reason to expect that the observable universe is
not typical of the structure of the universe beyond our visible horizon, 15
billion light years away.
It was subsequently been discovered that under fairly general
conditions inflation can be self-reproducing. That is, quantum fluctuations
within each inflating bubble will necessarily create conditions for further
inflation of microscopic regions to occur. This process or ‘eternal inflation’
appears to have no end and may not have had a beginning. Thus life will be
possible only in bubbles with properties which allow self-organized complexity
to evolve and persist.
It has been found that there is further scope for random variations in
these chaotic and eternal inflationary scenarios. In the standard picture we
have just sketched, properties like the expansion rate and temperature of each
inflated bubble can vary randomly from region to region. However, it is also possible for the
strengths and number of low-energy forces of Nature to vary. It is even
possible for the number of dimensions of space which have expanded to large
size to be different from region to region. We know that we cannot produce the
known varieties of organized biochemical complexity if the strengths of forces
change by relatively small amounts, or in dimensions other than three because
of the impossibility of creating chemical or gravitational bound states.
The possibility of these random variations arises because inflation is
ended by the decay of some matter field satisfying. This corresponds to the field evolving to a
minimum in its self-interaction potential. If that potential has a single
minimum then the characteristic physics that results from that ground state
will be the same everywhere. But if the potential has many minima (for example
like a sine function) then each minimum will have different low-energy physics
and different parts of the universe can emerge from inflation in different
minima and with different effective laws of interaction for elementary
particles. In general, we expect the symmetry breaking which chooses the minima
in different regions to be independent and random.
Contributed by: Dr. John Barrow
|