Main   Terms   People   Interviews   Resources   Events

How Can an Unembodied Intelligence Interact with the Natural World?

There is in fact no conceptual difficulty for an unembodied intelligence to interact coherently with the natural world. We are not in the situation of Descartes seeking a point of contact between the material and the spiritual at the pineal gland. For Descartes the physical world consisted of extended bodies that interacted only via direct contact. Thus for a spiritual dimension to interact with the physical world could only mean that the spiritual caused the physical to move. In arguing for a substance dualism in which human beings consist of both spirit and matter, Descartes therefore had to argue for a point of contact between spirit and matter. He settled on the pineal gland because it was the one place in the brain where symmetry was broken and where everything seemed to converge (most parts of the brain have right and left counterparts).

Although Descartes's argument doesn't work, the problem it tries to solve is still with us. When I attended a Santa Fe symposium sponsored by the Templeton Foundation in October 1999, Paul Davies expressed his doubts about intelligent design this way: "At some point God has to move the particles." The physical world consists of physical stuff, and for a designer to influence the arrangement of physical stuff seems to require that the designer intervene in, meddle with, or in some way coerce this physical stuff. What's wrong with this picture of supernatural action by a designer? The problem is not a flat contradiction with the results of modern science. Take for instance the law of conservation of energy. Although the law is often stated in the form "energy can neither be created nor destroyed," in fact all we have empirical evidence for is the much weaker claim that "in an isolated system energy remains constant." Thus a supernatural action that moves particles or creates new ones is beyond the power of science to disprove because one can always claim that the system under consideration was not isolated.

There is no logical contradiction here. Nor is there necessarily a god-of-the-gaps problem here. It's certainly conceivable that a supernatural agent could act in the world by moving particles so that the resulting discontinuity in the chain of physical causality could never be removed by appealing to purely physical forces. The "gaps" in the god-of-the-gaps objection are meant to denote gaps of ignorance about underlying physical mechanisms. But there's no reason to think that all gaps must give way to ordinary physical explanations once we know enough about the underlying physical mechanisms. The mechanisms may simply not exist. Some gaps might constitute ontic discontinuities in the chain of physical causes and thus remain forever beyond the capacity of physical mechanisms.

Although a non-physical designer who "moves particles" is not logically incoherent, such a designer nonetheless remains problematic for science. The problem is that natural causes are fully capable of moving particles. Thus for a designer also to move particles can only seem like an arbitrary intrusion. The designer is merely doing something that nature is already doing, and even if the designer is doing it better, why didn't the designer make nature better in the first place so that it can move the particles better? We are back to Van Till's Robust Formational Economy Principle.

But what if the designer is not in the business of moving particles but of imparting information? In that case nature moves its own particles, but an intelligence nonetheless guides the arrangement which those particles take. A designer in the business of moving particles accords with the following world picture: The world is a giant billiard table with balls in motion, and the designer arbitrarily alters the motion of those balls, or even creates new balls and then interposes them among the balls already present. On the other hand, a designer in the business of imparting information accords with a very different world picture: In that case the world becomes an information processing system that is responsive to novel information. Now the interesting thing about information is that it can lead to massive effects even though the energy needed to represent and impart the information can become infinitesimal (Frank Tipler and Freeman Dyson have made precisely such arguments, namely, that arbitrarily small amounts of energy are capable of information processing -- in fact capable of sustaining information processing indefinitely). For instance, the energy requirements to store and transmit a launch code are minuscule, though getting the right code can make the difference between starting World War III and maintaining peace.

When a system is responsive to information, the dynamics of that system will vary sharply with the information imparted and will largely be immune to purely physical factors (e.g., mass, charge, or kinetic energy). A medical doctor who utters the words "Your son is going to die" might trigger a heart attack in a troubled father whereas uttering the words "Your son is going to live" might prevent it. Moreover, it doesn't much matter how loudly the doctor utters one sentence or the other or what bodily gestures accompany the utterance. Such physical factors are largely irrelevant. Consider another example. After killing the Minotaur on Crete and setting sail back for Athens, Theseus forgot to substitute a white flag for a black flag. Theseus and his father Aegeus had agreed that a black flag would signify that Theseus had been killed by the Minotaur whereas a white flag would signify his success in destroying it. Seeing the black flag hoisted on the ship at a distance, Aegeus committed suicide. Or consider yet another nautical example, in this case a steersman who guides a ship by controlling its rudder. The energy imparted to the rudder is minuscule compared to the energy inherent in the ship's motion, and yet the rudder guides its motion. It was this analogy that prompted Norbert Wiener to introduce the term "cybernetics," which is derived etymologically from the Greek and means steersman. It is no coincidence that in his text on cybernetics, Wiener writes about information as follows Cybernetics 2nd ed., p. 132): "Information is information, not matter or energy. No materialism which does not admit this can survive at the present day."

How much energy is required to impart information? We have sensors that can detect quantum events and amplify them to the macroscopic level. What's more, the energy in quantum events is proportional to frequency or inversely proportional to wavelength. And since there is no upper limit to the wavelength of, for instance, electromagnetic radiation, there is no lower limit to the energy required to impart information. In the limit, a designer could therefore impart information into the universe without inputting any energy at all. Whether the designer works through quantum mechanical effects is not ultimately the issue here. Certainly quantum mechanics is much more hospitable to an information processing view of the universe than the older mechanical models. All that's needed, however, is a universe whose constitution and dynamics are not reducible to deterministic natural laws. Such a universe will produce random events and thus have the possibility of producing events that exhibit specified complexity (i.e., events that stand out against the backdrop of randomness). Now as I've already noted, specified complexity is a form of information, albeit a richer form than Shannon information, which trades purely in complexity (cf. chapter 6 of my book Intelligent Design as well as my forthcoming No Free Lunch . What's more, as I've argued in The Design Inference specified complexity (or specified improbability as I call it there -- the concepts are the same) is a reliable empirical marker of actual design. Now the beauty is that we live in a non-deterministic universe that is open to novel information, that exhibits specified complexity, and that therefore gives clear evidence of a designer who has imparted it with information.

It's at this point that critics of design throw up their hands in disgust and charge that design theorists are merely evading the issue of how a designer introduces design into the world. From the design theorists perspective, however, there is no evasion here. Rather there is a failure of imagination on the part of the critic (and this is not meant as a compliment). In asking for a mechanistic account of how the designer imparts information and thereby introduces design, the critic of design is like a physicist trained only in Newtonian mechanics and desperately looking for a mechanical account of how a single particle like an electron can go through two slits simultaneously to produce a diffraction pattern on a screen (cf. the famous double-slit experiment). On a classical Newtonian view of physics, only a mechanical account in terms of sharply localized and individuated particles makes sense. And yet nature is unwilling to oblige any such mechanical account of the double slit experiment (note that the Bohmian approach to quantum mechanics merely shifts what's problematic in the classical view to Bohm's quantum potential). Richard Feynman was right when he remarked that no one understands quantum mechanics. The "mechanics" in "quantum mechanics" is nothing like the "mechanics" in "Newtonian mechanics." There are no analogies that carry over from the dynamics of macroscopic objects to the quantum level. In place of understanding we must content ourselves with knowledge. We don't understand how quantum mechanics works, but we know that it works. So too, we don't understand how a designer imparts information into the world, but we know that a designer imparts information.

It follows that Howard Van Till's riddle to design theorists is ill-posed. Van Till asks whether the design that design theorists claim to find in natural systems is strictly mind-like (i.e., conceptualized by a mind to accomplish a purpose) or also hand-like (i.e., involving a coercive extra-natural mode of assembly). As with many forced choices Van Till has ignored a tertium quid namely, that design can also be word-like (i.e., imparting information to a receptive medium). In the liturgies of most Christian churches, the faithful pray that God keep them from sinning in "thought, word, and deed." Each element of this tripartite distinction is significant. Thoughts left to themselves are inert and never accomplish anything outside the mind of the individual who thinks them. Deeds, on the other hand, are coercive, forcing physical stuff to move now this way and now that way (it's no accident that the concept of force plays such a crucial role in the rise of modern science). But between thoughts and deeds are words. Words mediate between thoughts and deeds. Words give expression to thoughts and thus bring the self in contact with the other. On the other hands, words by themselves are never coercive (without deeds to back up words, words lose their power to threaten). Nonetheless, words have the power to engender deeds not by coercion but by persuasion. Process and openness-of-God theologians will no doubt find these observations congenial. Nonetheless, Christian theologians of a more traditional bent can readily sign off on them as well.

Email link | Printer-friendly | Feedback | Contributed by: Dr. William Dembski

Topic Sets Available

AAAS Report on Stem-Cells

AstroTheology: Religious Reflections on Extraterrestrial Life Forms

Agency: Human, Robotic and Divine
Becoming Human: Brain, Mind, Emergence
Big Bang Cosmology and Theology (GHC)
Cosmic Questions Interviews

Cosmos and Creator
Creativity, Spirituality and Computing Technologies
CTNS Content Home
Darwin: A Friend to Religion?
Demystifying Information Technology
Divine Action (GHC)
Dreams and Dreaming: Neuroscientific and Religious Visions'
E. Coli at the No Free Lunchroom
Engaging Extra-Terrestrial Intelligence: An Adventure in Astro-Ethics
Evangelical Atheism: a response to Richard Dawkins
Ecology and Christian Theology
Evolution: What Should We Teach Our Children in Our Schools?
Evolution and Providence
Evolution and Creation Survey
Evolution and Theology (GHC)
Evolution, Creation, and Semiotics

The Expelled Controversy
Faith and Reason: An Introduction
Faith in the Future: Religion, Aging, and Healthcare in the 21st Century

Francisco Ayala on Evolution

From Christian Passions to Scientific Emotions
Genetic Engineering and Food

Genetics and Ethics
Genetic Technologies - the Radical Revision of Human Existence and the Natural World

Genomics, Nanotechnology and Robotics
Getting Mind out of Meat
God and Creation: Jewish, Christian, and Muslim Perspectives on Big Bang Cosmology
God, Humanity and the Cosmos: A Textbook in Science and Religion
God the Spirit - and Natural Science
Historical Examples of the Science and Religion Debate (GHC)
History of Creationism
Intelligent Design Coming Clean

Issues for the Millennium: Cloning and Genetic Technologies
Jean Vanier of L'Arche
Nano-Technology and Nano-ethics
Natural Science and Christian Theology - A Select Bibliography
Neuroscience and the Soul
Outlines of the Science and Religion Debate (GHC)

Perspectives on Evolution

Physics and Theology
Quantum Mechanics and Theology (GHC)
Questions that Shape Our Future
Reductionism (GHC)
Reintroducing Teleology Into Science
Science and Suffering

Scientific Perspectives on Divine Action (CTNS/Vatican Series)

Space Exploration and Positive Stewardship

Stem-Cell Debate: Ethical Questions
Stem-Cell Ethics: A Theological Brief

Stem-Cell Questions
Theistic Evolution: A Christian Alternative to Atheism, Creationism, and Intelligent Design...
Theology and Science: Current Issues and Future Directions
Unscientific America: How science illiteracy threatens our future
Will ET End Religion?

Current Stats: topics: >2600, links: >300,000, video: 200 hours.